from qiskit import QuantumCircuit, Aer, transpile, assemble from qiskit.aqua.components.optimizers import COBYLA from qiskit.circuit import Parameter import numpy as np # Define the desired probability distribution target_probs = [0.1666666666] * 6 # Define the quantum circuit circ = QuantumCircuit(6, 6) circ.h(range(6)) # Add the parameterized Ansatz using Parameter params = [Parameter(f'var{i}') for i in range(6)] circ.rx(params[0], 0) circ.rx(params[1], 1) circ.rx(params[2], 2) circ.rx(params[3], 3) circ.rx(params[4], 4) circ.rx(params[5], 5) # Define the optimization objective function def objective_function(params): # Update the circuit with new parameters updated_circ = circ.bind_parameters({params[i]: optimal_params[i] for i in range(6)}) # Compile and run the circuit t_circ = transpile(updated_circ, Aer.get_backend('qasm_simulator')) qobj = assemble(t_circ) result = Aer.get_backend('qasm_simulator').run(qobj).result() # Calculate the probability distribution counts = result.get_counts() probs = [counts.get(format(i, '06b'), 0) / result.shots for i in range(2 ** 6)] # Calculate the objective function (sum of squared differences) return sum((probs[i] - target_probs[i]) ** 2 for i in range(2 ** 6)) # Optimize the circuit parameters optimizer = COBYLA(maxiter=1000) optimal_params = optimizer.optimize(num_vars=6, objective_function=objective_function) # Print the optimal parameters print("Optimal Parameters:", optimal_params)